
 Professional, Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 1

Development Guide of DWIN OS Platform Based on T5L CPU

Contents

1. DWIN OS Platform Structure .. 2

2. DWIN OS Debugging Port（UART2） ... 4

3. Storage Space .. 5

3.1 Users Data Library ... 5

3.2 Data Variable Space .. 5

3.3 Register .. 6

3.4 Port Register ... 6

4. DWIN OS Assembly Instruction Set .. 9

4.1 Data Exchange ... 9

4.2 Computation .. 10

4.3 Logic Operation .. 12

4.4 Data Processing ... 12

4.5 Process Controlling .. 14

4.6 Peripheral Operation .. 15

5. Appendix .. 17

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 2

1. DWIN OS Platform Structure

(1) DWIN OS Code Space Definition

Code Address Definition Description

0x0000-0x0FFF L2_Cache The space of program dynamically loads and calls, 4KB.

0x1000 RESET
The start address of program operating when reset, place one GOTO command to
jump to the main program.

0x1004 T0 _INT
The entrance address of T0 INT program, applying GOTO command to jump to T0
interrupting service program.

0x1008 T1 _INT
The entrance addressT1 INT program, applying GOTO command to jump to T1
interrupting service program.

0x100C T2 _INT
The entrance address T2 INT program, applying GOTO command to jump to T2
interrupting service program.

program.
0x1020-0x107F Reserved Reserved.

0x1080-0x7FFF Main Code Main program code space.

(2) The max nested call of subroutine including interrupted program, up to grade 127.

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 3

(3) Typical program structure.

If interrupts were not adopted(closed the interrupt), the code space of 0x1004-0x107F could be

used at will.

If the main program is needed to operate breakpoint simulation, the interrupt shall be closed.

otherwise, the timer keeps running under simulation status, opening interrupt would cause the main

program to fail operating breakpoint simulation.

ORG 1000H

GOTO MAIN
; The first command must GOTO.

GOTO T0INT ; When interrupt, jumping to T0 to interrupting program, must use
GOTO, can not use CALL.

NOP ; T1 Discontinuity not be used.

GOTO T2INT ; Discontinuity produces, jumping to T2 to interrupting service
program.

 ORG 1080H
MAIN: NOP ; Main program
 GOTO MAIN

T0INT: NOP ; T0 interrupt handling

 RET1 ; Use RETI end, can not use RET.

T1INT: NOP ; T1 interrupt handling
 RET1

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 4

2. DWIN OS Debugging Port（UART2）

System debug serial port UART2’s mode is 8N1, baud rate can be installed, data frame is made up by

5 parts.

Explanation of UART2 debug port instruction below:

Instruction Data Description

0x80

Issue: ADR(0x00-0x08)+ADR(0x00-0xFF)+Data_Pack Write data in designated addresses in register.

Respond: 0x4F 0x4B Write command respond.

0x81

Issue: ADR (0x00-0x08)+ADR(0x00-0xFF)+ RD_LEN（0x01-

0xFB)
Read data in designated addresses in register.

Respond: ADR(0x00-0x08)+ADR(0x00-
0xFF)+RD_LEN+Data_Pack

Response with data.

0x82

Issue: First ADR(0x0000-0xFFFF)+Data_Pack
Write data in designated addresses in variable
SRAM.

Respond: 0x4F 0x4B Write Instruction respond.

0x83

Issued: First ADR (0x0000-0xFFFF) + RD_LEN (0x01-0x7D)
Read the specified length of word data from the
specified address in the variable space.

Respond: First ADR + variable data word length + read variable
data

Response with data.

Data respond register page is defined as follow:

Data 1 2 3 4 5

Definition Frame Header Data Length Command Data
CRC Check
(Optional)

Data Length 2 1 1 n 2

Description

0x5AA5

Including command,

data and check
0x80/0x81/0x82//0x83

Example
(without
check)

5A A5 04 83 00 10 04

Example
(with check) 5A A5 06 83 00 10 04 25 A3

Register Page ID Definition Description

0x00-0x07

Data Register

Each group 256, R0-R255

0x08 Port Register

DR0-DR255
Details in DWIN OS development guide basing on T5L, 3.4 port register definition
description.

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 5

3.Storage Space

3.1Users Data Library

Include two parts:

(1) The flash in the T5L chip can be accessed by system variable interface and all DWIN OS based on

T5 can be supported.

(2) A large database or data store located on an off-chip flash, accessed through a system variable

interface, depending on the hardware platform.

3.2 Data Variable Space

The data variable space is a 128kbytes double-port RAM, the separated of T5L core can exchange

data, the definition as below:

At all DWIN OS platform based on T5L CPU, the first 16-word definition of system variable port is

unified, shown as follows:

Address Definition Length Description

0x00 Reserve 4

0x04 System_Reset 2

0x55AA 5AA5=reset T5L;

0x06 OS_Update_CMD 2

D3: 0x5A first updates DWIN OS program(inserting into ram Flash), clearing after CPU
operation finish.
D2: Fixing as 0x10, DWIN OS code should be start from 0x1000.
D1: 0:The initial data variation space address of store-and-update code 0x1000-
0x0C7E should be even.

0x08
NOR_

Flash_RW_CMD
4

D7: operation mode 0x5A=read 0xA5=write, clearing after CPU operation finished.
D6: 4: the initial address of ram Nor Flash data base should be even. 0x000000-0x02:
FFFE, 256KWords.
D3: 2: the initial data variation space address should be even.
D1: 0: the length of read and write word should be even.

0x0C
UART2_Set

2

D3=0x5A means UART2 serial mode setting, only used for GUI CPU setting, UART2
mode after reset, OS can not operate itself.
D2=serial mode, 0x00=8N1.
D1: D0=baud rate value, baud rate value=3225600/set baud rate.

0x0E Reserve 1

0x0F Ver 1
Application software version. D1 refers to CPU0 soft version, D0 refers to CPU1
software version.

Variable
Port Interval

Interval

（K words）
Definition Description

0x0000-0x03FF 1.0 System variable port
Hardware, storage visit control, data exchange. detailed definition
is related to hardware platform.

0x0400-0x07FF 1.0 Reserved Users do not apply.

0x0800-0x0BFF 1.0 Reserved Users do not apply.

0x0C00-0x0FFF 1.0 Reserved Users do not apply.

0x1000-0xFFFF 60
Users variable

data/space

Users variable, storage read, write buffer and so on, users
program by themselves.

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 6

Since variable memory is shared by two CPU cores, too frequent continuous reading and writing

variable memory will seriously affect the processing efficiency of the CPU. Therefore, a 1mS timer

interrupt is used to periodically query the data update of variable memory.

3.3 Register

DWIN OS based on T5L has a total of 2048 registers, divided into 8 pages for access, each page has

256 registers, corresponding to R0-R255.

3.4 Port Register

Based on T5L, DWIN OS has a port register page, with 256 port registers, as a quick visit port for

hardware resources.

DR# Length R/W Definition Description

0 1 R/W REG_Page_Sel 8 register pages of OS change, DR0=0x00-0x07

1 1 R/W SYS_STATUS
System status register, bitwise definition:
.7 CY carry flag.
.6 DGUS screen variation automatic uploading control 1=close 0=open

2 14 - - System Reserve Access forbidden.

16 1 R UART3_TTL_Status

Serial received frame overtime timer status:
0x00= received frame overtime timer overflowing others=no overflowing.
It should be done first that applying RDXLEN command reads received length,
when length is not 0, then checking overtime timer status.

17 1 R UART3_TTL_Status

18 1 R UART4_TTL_Status

19 1 R UART5_TTL_Status

20 1 R UART6_TTL_Status

20 1 R UART7_TTL_Status

21 1 - - Reserve

22 1 R UART3_TX_LEN
UART3 the applying depth(Bytes) of buffer sending buffer size is 256Bytes,
users read only.

23 1 R UART4_TX_LEN
UART4 the applying depth(Bytes) of buffer sending buffer size is 256Bytes,
users read only.

24 1 R UART5_TX_LEN
UART5 the applying depth(Bytes) of buffer sending buffer size is 256Bytes,
users read only.

25 1 R UART6_TX_LEN
UART6 the applying depth(Bytes) of buffer sending buffer size is 256Bytes,
users read only.

26 1 R UART7_TX_LEN
UART7 the applying depth(Bytes) of buffer sending buffer size is 256Bytes,
users read only.

27 1 - - Reserve

28 1 R/W UART3_TTL_SET
UART3 the time of received frame overtime timer. Unit 0.5mS, 0x01-0xff,
power-on set as 0x0A.

29 1 R/W UART4_TTL_SET
UART4 the time of received frame overtime timer. Unit 0.5mS, 0x01-0xff,
power-on set as 0x0A.

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 7

30 1 R/W UART5_TTL_SET
UART5 the time of received frame overtime timer. Unit 0.5mS, 0x01-0xff,
power-on set as 0x0A.

31 1 R/W UART6_TTL_SET
UART6 the time of received frame overtime timer. Unit 0.5mS, 0x01-0xff,
power-on set as 0x0A.

32 1 R/W UART7_TTL_SET
UART7 the time of received frame overtime timer. Unit 0.5mS, 0x01-0xff,
power-on set as 0x0A.

33 1 - - Reserve

34 1 R/W T0 8bit user timer 0, ++counting, datum 10uS.

35 2 R/W T1 16bit user timer 1, ++ counting, datum 10uS.

37 2 R/W T2
16bit user timer 2, ++ counting, datum designed by users through CONFIG
command.

39 2 R/W T3
16bit user timer 3, ++ counting, datum designed by users through CONFIG
command.

41 1 R/W CNT0_Sel
Relevant position 1 choosing related I/O to counting changes, corresponding
IO7-IO0.

42 1 R/W CNT1_Sel
Relevant position 1 choosing related I/O to counting changes, corresponding
IO7-IO0.

43 1 R/W CNT2_Sel
Relevant position 1 choosing related I/O to counting changes, corresponding
IO15-IO8.

44 1 R/W CNT3_Sel
Relevant position 1 choosing related I/O to counting changes, corresponding
IO15-IO8.

45 1 R/W Int_Reg

Interrupting control register.
.7=Interrupt main switch 1= enable(open or not depending on single
interrupting control position) 0=ban.
.6=Timer INT0 Enable 1=interrupt timer 0 interrupt on 0=interrupt timer 0
interrupt off.
.5=Timer INT1 Enable 1=interrupt timer 1 interrupt on 0=interrupt timer 1
interrupt off.
.4=Timer INT2 Enable 1=interrupt timer 2 interrupt on 0=interrupt timer 2
interrupt off.

46 1 R/W Timer INT0 Set
8Bit timer interrupt 0 settings value, interrupt time=timer_INT0_Set*10uS,
0x00=256.

47 1 R/W Timer INT1 Set
8Bit timer interrupt 1 setting value, interrupt time=timer_INT1_Set*10uS,
0x00=256.

48 2 R/W Timer INT2 Set 16Bit timer interrupt 2 setting value, interrupt time=timer_INT2_Set+1*10uS.

50 10 R/W Polling_Out0_Set

The firstly IO0-IO15 scans output configuration timely, 10 bites each.
D9(DR50): 0x5A=scan output applying, other as no applying.
D8: Outputting register page of data, 0x00-0x07.
D7: Outputting start and end address of data, 0x00-0xFF
D6: Outputting the word length of data, 0x01-0x80, each data 2 Bytes
corresponding to IO15-IO0.
D5-D4: IO15-IO0 output aisle choosing, needing output aisle, corresponding bit
set as 1.

D3-D2: single outputting interval T, unit as（T+1）*10uS.

D1-D0: Outputting cycle counting designed, it minus 1 after finishing 1 cycle
every time, then outputting 0 till minus to 0.

60 10 R/W Polling_Out1_Set The second IO0-IO15 scans output configuration timely.

70 9 - - Reserve

80 6 R/W IO6 Trigger time

D5=0x5A means that an IO 6 falling edge trigger is captured.
D4: D3=IO15-IO0’s condition when triggered.
D2: D0=the catching time of system timer 0x000000-0x00FFFF cycle, unit as
1/41.75uS.

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 8

86 6 R/W IO7 Trigger time

D5=0x5A means that an IO7 falling edge trigger is captured.
D4: D3=IO15-IO0’s condition when triggered.
D2: D0=the catching time of system timer 0x000000-0x00FFFF cycle, unit as
1/41.75uS.

92 37 - - Reserve

129 3 R/W IO_Status The real-time status of IO19-IO0’s

132 2 R/W CNT0 CNT0 changing counting value, resetting to 0x0000 when counting to 0xFFFF.

134 2 R/W CNT1 CNT1 changing counting value, resetting to 0x0000 when counting to 0xFFFF.

136 2 R/W CNT2 CNT2 changing counting value, resetting to 0x0000 when counting to 0xFFFF.

138 2 R/W CNT3 CNT3 changing counting value, resetting to 0x0000 when counting to 0xFFFF.

140 116 - - Reserve

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 9

4. DWIN OS Assembly Instruction Set

(1) R# means DWIN OS in present register page, any or any group of 256 register, R0-R255;

(2) DR# means one or any group of 256 port register, DR0-DR255;

(3) < >means Immediate number, in the Assembly code,100, 0x64, 64H, 064H all means 10 hex data

100.

(4) Pseudo directives: ORG DB DW.

(5) Use; as a comment symbol.

(6) Description of variable and data type can be visited by DWIN OS as following:

Variable Type Mark Type Space Description

DWIN OS register R0-R255 Byte 2048 Bytes Divided into 8 pages, control page by DR0 port register.

Port register DR0-DR255 Byte 256 Bytes

Data variable space XRAM Word 64K Words Range of address: 0x0000-0xFFFF

User data library LIB Word
Depend on
hardware

(7) When T5L CPU runs at the speed of 200MHz, the average operating time of one DWIN OS

command is about 125nS (8MIPS).

4.1Data Exchange

Command Function Code Number Description

Data exchange
between Variables &

Registers
MOVXR

R#, <MOD>,
<NUM>

R#:Register or Register group.
<MOD>: 0=Register to variable 1=Variable to register.

<NUM>: exchange data word（Word）length, 0x00-0x80;

When<NUM>is 0x00, data length depends on R9.
Data variable pointer is defined by R0: R1 register.
MOVXR R20, 0, 2

Load N 8bit
Immediate number to

register group
LDBR

R#, <DATA>,
<NUM>

R#: Register or Register group.
<DATA>: Data need loading.
<NUM>: Number of Register need loading, 0x00 means 256.
LDBR R8, 0x82, 3

Load 1 16 bit
numbers to Registers

LDWR R#, <DATA>

R#: Register group.
<DATA>: Number of that loading
LDWR R8,1000.
LDWR R8, -300

Load address code
space

LDADR <Address>
Load <Address> to R5: R6: R7 LDADR TAB
LDADR 0x123456

Look up in Program
Space (Program

Space to DWIN_OS
Registers)

MOVC R#, <NUM>

R#: Register or Register group.
<NUM>: byte data length Look up table return Address pointer is
defined by R5: R6: R7 register MOVC R20,10
Attention, code after 0x1000 can not read code content before 0x1000.

Data transfer from
Register to DGUS

Register
MOV

R#S, R#T,
<NUM>

R#S: Origin register or register group R#T: goal register or register
group.
<NUM>: Font data length exchanged, 0x00 means length is defined by
R9 register.
MOV R8, R20, 3

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 10

Register to port
register

MOVRD
R#, DR#,
<NUM>

R#: Register or Register group; DR#:Port Register or Register group;
<NUM>: Font data length exchanged, 0x00 means length is defined by
R9 register.
MOVRD R10, 3, 2

Port register to
register

MOVDR
DR#, R#,
<NUM>

R#: Register or register group; DR#:port register or register group;
<NUM>: Font data length exchanged, 0x00 means length is defined by
R9 register.
MOVDR 3, R10, 2

Exchange data
between

data variable
MOVXX <NUM>

<NUM>: exchange（Word）length of data.

<NUM> 0 means length is defined by R8: R9 register Origin variable
address length is defined by R0:R1 register. Goal variable address is
defined by R2:R3.
When the distance between source address and target address is
shorter than the length of moving data, the later length shall not longer
than 32.
MOVXX 100

Registers Indexed
addressing

MOVA

Without or 0x00

Register data exchange, according to register paging access:

R2 stipulate origin address of register（group）

R3 stipulate rule goal address of register group R9 stipulate data length
exchanged, bytes.
MOVA or MOVA 0x00

0x01

Register data exchange, all registers as a 2KB data area to access:
R0: R1stipulate origin address of register, 0x0000-0x7FF;
R2: R3stipulate rule goal address of register, 0x0000-0x7FF;
R9 stipulate date length exchanged, bytes, 0x00-0xFF, 0x00 show 256.
Address high byte = source or destination register DR0 low byte =
source or destination register address.
MOVA 0x01

Register stack
256 bytes

PUSH R#<NUM>
Save the <NUM> register data starting with R# to the data stack.
PUSH R8, 4

POP R#<NUM>
Fetch data from the data stack to the <NUM> registers starting with R#.
POP R8, 4

4.2 Computation

Command
Function

Code Number Description

32bit integers addition ADD R#A, R#B, R#C
C=A+B, A, B are 32bit integers, C is 64bit integer.
E.g. ADD R10, R20, R30

32bit integers
subtraction

SUB R#A, R#B, R#C
C=A-B, A, B are 32bit integers, C is 64bit integer.
E.g. SUB R10, R20, R30

64bit MAC for long
integers

MAC R#A, R#B, R#C
C=(A*B+C), A, B are 32bit integers, C is 64bit integer.
E.g. MAC R10, R20, R30

64bit integers division DIV
R#A, R#B,

<MOD>

A/B, A is quotient, B is reminder. A and B are 64bit register.
<MOD>: 0: The quotient will not be rounded. 1: The quotient WILL BE
ROUNDED.
E.g. DIV R10, R20, 1

Expand variable to
32bit

EXP
R#S, R#T,
<MOD>

Expand the data in R#S to 32bit and save to R#T R#S: Source
register(s)
R#T: Target register
<MOD>: Data type of R#S.
0=8Bit unsigned; 1=8bit signed 2=16bit unsigned 3=16bit integer.
E.g. EXP R10, R20, 2

32bit unsigned MAC

SMAC
R#A, R#B, R#C

C=A*B+C
A and B are 16bit unsigned integer, C is 32bit unsigned integer.
E.g. SMAC R10, R20, R30

Register self-increase

INC

R#,
<MOD>,
<NUM>

R#=R#+NUM, unsigned self-increasing calculation,<NUM>0x00-0xFF.
<MOD>: Data type of R#; 0=8bit 1=16bit
E.g. INC R10, 1, 5

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 11

Register
self-decrease

DEC
R#, <MOD>,

<NUM>

R#=R#-NUM, unsigned self-decreasing calculation,<NUM>0x00-0xFF.
<MOD>: Data type of R#; 0=8bit; 1=16bit.
E.g. DEC R10, 0, 1

Square root count SQRT R#A, R#B

Count a 64 bit unsigned R#A’s Square root and reserve it into R#B.
R#A: Reserve 8 Bytes unsigned;
R#B: Reserve 4 Bytes unsigned result.
E.g. SQRT R80, R90

Floating-point and
fixed-point integer

conversion
FINT

R#F, R#I,
<MOD>

Implement 1 floating point number and 1 64bit fixed point integer
conversion.
R#F: The r egister that holds the floating-point number, 32bit or 64bit;
R#I : Register to store fixed-point integer, 64bit;
<MOD>:
.7 Represents the floating-point number format: 0=32bit single precision
1=64bit double precision.
.6 Conversion type 0=Convert floating-point number to fixed-point
integer 1=Convert fixed-point integer to floating-point number.
.5 Undefined, write 0
.4-.0 The number of decimal places for fixed-point integers, 0x00-0x1F,
up to 31 decimal places.

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 12

4.3 Logic Operation

Command
Function

Code Number Description

Logical calculation:
AND

AND
R#A, R#B,

<NUM>

A=A AND B, Logical “AND” calculation for series of Registers.
<NUM>: Data length of R#A, R#B in BYTES.
E.g. AND R10, R20, 1

Logical calculation:
OR

OR
R#A, R#B,

<NUM>

A=A OR B, Logical “OR” calculation for series of Registers.
<NUM>: Data length of R#A, R#B in BYTES.
E.g. OR R10, R20,1

Logical calculation:
XOR

XOR
R#A, R#B,

<NUM>

A=A XOR B, Logical “XOR” calculation for series of Registers.
<NUM>: Data length of R#A, R#B in BYTES
E.g. XOR R10, R20, 1

Left ring move SHL
R#, <NUM>,
<BIT_NUM>

Turn R#point<NUM> register left and ring move<BIT_NUM>bit.
E.g. SHL R10, 2, 1

Right ring move SHR
R#, <NUM>,
<BIT_NUM>

Turn R#point <NUM>register right and ring move<BIT_NUM>bit.
E.g. SHR R10, 2, 1

4.4 Data Processing

Command
Function

Code Number Description

Sequence comparison TESTS

R#A,R#B,
<NUM>

Compare the values in R#A and R#B by sequence.
If not match, return the current address of R#A to R0 register; If match,
return 0x00 to R0 register.
R#A: Starting register for register series A; R#B: Starting register for
register series B;
<NUM>: max length for data comparison.
E.g. TESTS R10, R20, 16

Integer linear equation ROOTLE

Calculate the Y value according to the given X value, which is a point
on the line defined by (X0, Y0) and (X1, Y1) in 16bit integer.
Input: X=R10, X0=R14, Y0=R16, X1=R18, Y1=R20
Output: Y=R12
E.g. ROOTE

ANSI CRC-16 CRCA R#S, R#T, R#N

Perform ANSI CRC-16 calculation on series of Registers. ANSI CRC-
16(X16+X15+X2+1).
R#S: Registers for Input.
R#T: Registers to hold the result, 16bit, LSB mode.
R#N: Save the length for CRC byte data, 8bit.
E.g. CRCA R10, R80, R9

CCITT CRC-16 CRCC R#S, R#T, R#N

Perform CCITT CRC-16 calculation on series of Registers. CCITT
CRC-16(X16+X12+X5+1).
R#S: Registers for Input.
R#T: Registers to hold the result, 16bit, MSB mode.
R#N: Save the length for CRC byte data, 8bit.
E.g. CRCC R10, R80, R9

HEX transfer ASCII
string

HEXASC
R#S, R#T,

<MOD>

R#S: 32bit Integer needed transfering; R#T: ASCII string register group
transfered;
<MOD>: Transfer mode,high 4bit is length of Integer bit, low 4bit is
number of Decimal.
ASCII string transfered with symbol, Right alignment, empty is filled
with 0x20.
To data 0x12345678,
<MOD>=0x62 transfered result is+054198.96
<MOD>=0xF2 transfered result is+3054198.96
HEXASC R20, R30, 0x62

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 13

Convert ASCII string
to HEX characters

ASCHEX R#S, R#T, <LEN>

Convert ASCII string to signed 64-bit HEX data.
R#S: Starting address for registers stored ASCII Strings.
R#T: A 64bits register to hold the output 64-bit Hex data.
<LEN>: The length for ASCII string, include sign bit and decimal point.
0x01-0x15.
E.g. ASCHEX R10, R80, 0x05

Data processing MATH
<MOD>, R#P,

R#N

Process the data in the data storage area, and the data is a 16-bit
unsigned number.
R#P: 7 register data D0-D7 starting from R#P.
D0The start address of the register where the processing result is
saved.
D1: D2 The next (future) data is at the first address (relative address,
data location) of the data buffer the historical data will be read forward
from the current position during processing).
D3: D4 The start address of the data buffer area in the data storage
area.
D5: D6 The word length of a D6 data buffer area must not be less than
the value of R#N.
R#N: The number of data processing points (1-N words per point),
0x00-0xFF, 0x00 means 256.
<MOD>=0x00
Calculate the average value, and the result is a 32-bit unsigned number
with a unit of 1/65536.
<MOD>=0x01
Calculate the max value, and the result is a 16bit unsigned number.
<MOD>=0x02
Calculate the min value, and the result is a 16-bit unsigned number.
<MOD>=0x03
Calculate the root mean square (RMS), and the result is a 32-bit
unsigned number with a unit of 1/65536.
<MOD>=0x04
According to y=k*x+b, carry out least square method parameter
estimation.
The data storage format is (x0, y0)...(xn, yn), and the return format is (k,
b).
k, b The returned result is a 32-bit integer, and the unit is 1/65536.
<MOD>=0x05
Not support.
<MOD>=0x06
Calculate the standard deviation (RMSE), and the result is a 32-bit
unsigned number with a unit of 1/65536.
MATH 0, R0, R10

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 14

4.5 Process Controlling

Command
Function

Code Number Description

None NOP
None of operation.
NOP

Conditional bit jump JB R#, <Bit>, <TAB>

Evaluate the <bit> in R# register. If 1, jump to <NUM>; if 0, proceed to
next instruction, jump range +/-127 instructions.
R#: the register contains data to be evaluated.
<Bit>: the index of the bit to be evaluated. 0x00-0x0F (MSB).
<TAB>: jump position.
E.g.JB R10, 15, TEST1
NOP
TEST1: ADD R8, R12, R16

Variable conditional
jump (not equal)

CJNE
R#A, R#B,

<TAB>

Compare the value of 2 8-bit registers (R#A and R#B). If equal, proceed
to the next instruction; if not equal, jump to<NUM>.
E.g. TEST1: NOP
 INC R10, 0, 1 CJNE R10,R11, TEST1

16bit Integer
conditional jump (less

than)
JS

R#A, R#B,
<TAB>

Compare the value for 2-bit integer in R#A and R#B. If A>=B, proceed
to the next instruction; If A<B, jump to <NUM>
E.g. JS R10, R12, TEST1 NOP TEST1: NOP

16bit comparison,
<jumping

JU
R#A, R#B,

<TAB>

Compare A, B 16bit the unsigned, A>=B carry out next command, A<B
jumping, range of jumping +/-127 commands.
JU R10, R12, TEST1 NOP
TEST1: NOP

Value conditional jump
(number and Variable)

IJNE
R#, <INST>,

<TAB>

Compare the value in 8-bit Register and a instant Number <INST>. If
equal, process to next instruction; if not equal, jump to <NUM>.
E.g. IJNE R10, 100, TEST1 NOP
TEST1: NOP

Decrement> 0 jumping DJNZ
R#, <NUM>,

<TAB>

R#is 16bit, every count R#=R#-<NUM>, if R#> 0 jumping,
In contrast, carry out next command, range of jumping +/-
127commands.
TEST1: NOP
DJNZ R10, 1, TEST1

Return RET
Return to the main program by calling this function in the sub-program.
E.g.RET

Interrupt program
return

REIT
Interrupting program and return.
RETI

Call sub-function CALL <PC>
Call sub-program in a position of program counter max support 32
levels of program nesting.
E.g. CALL TEST

Direct jump GOTO <PC>

Program jump.
If <PC>=0xFFFF, it means taking the position of <R5:R6:R7> as the
reference, and R1: R0 as the relative PC.
Pointer to jump.
E.g. GOTO TEST1 NOP
TEST1: NOP

Program end END
DWIN OS program over command after carrying out this command, PC
pointer reset to 0x1000, run again. same as software reset.
END

Notice:

Interrupting program should apply GOTO, RETI command.

Subprogram calling must use CALL and RET commands in pairs, transferring the program with GOTO

and RET command will result in an abnormal stack overflow.

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 15

4.6 Peripheral Operation

Command

Function
Code Number Description

Serial setting COMSET
<MODE/R#>,

<BS>

Set serial port mode:
<MODE>: high 4bit choose serial port needed to be set, 3=UART3

… 5=UART5
low 4bit choice mode. 0x*0=N81, 0x*1=E81,

0x*2=O81, 0x*3=N82 mode.
<BS>: baud rate setting value,

2Bytes.

For UART3,

Setting value= 6451200/ set baud,

rate. setting value range = 1-1023.

To UART4-UART5, setting value= 25804800/ set, range of setting

value 1-65535.
Corresponding UART’s transceiver buffer will be cleared during each
setting procedure.
If<BS>=0x0000, then<MODE>will be register pointer, pointing
3 registers, in sequence corresponded to<MODE>, <BS>

value. COMSET 0x30, 136

Serial send COMTXD
<COM>,

R#S, R# N

Dispatching data to specified port.

<COM>: choose port, 0-2 no support 3=UART3…

5=UART5

R#S: data register group to be sent.

R#N: bytes register to be sent, 8bit, register data 0x00 refers to sending

256 Bytes data. COMTXD 3, R10, R9

Check
COM_Rx_FIFO RDXLEN <COM>, R#

Returning to COM, receiving buffer area (FIFO) and data bytes
length (0-255) to R# register.
0x00 refers to no data.
<COM>: choose port, 0-2 no support 3=UART3…

5=UART5 RDXLEN 3, R10

Read COM_Rx_FIFO RDXDAT
<COM>,

R#A, R#B

Receiving buffer (FIFO) from COM, then reading R#B bytes (01-
255) to R#A register.

<COM>: choose serial port, 0-2 no support, 3=UART3…

5=UART5 RDXDAT 3, R11, R10

Direct serial transmit COMTXI
<COM>,

R#, <NUM>

<NUM> register content with R# points sent to COM.
<COM>: choose serial port, 0-2 no support, 3=UART3… 5=UART5

COMTXI 3, R20,16

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 16

Hardware setting CONFIG

<TYPE>,

<D1/R#>,

<D0>

<TYPE>: hardware type choice, just low 7bit effective.

TYPE.7=0 refers to D1, D0 as immediate values.

TYPE.7=1 refers to D1 will be register pointer, pointing 2 registers.
TYPE.6-TYPE.0 select the hardware type,

0x00: Setting I/O port mode.

D1 chooses IO port, 0x00-0x02 corresponds P0-P2, among them P0.7-

P0.0 corresponds IO7-IO0

P1.7-P1.0 corresponds IO15-IO8 P2.1-
P2.0 corresponds IO17-IO16 D0 is
corresponds setting value.
D0.X=1 as output (Push-Pull) D0.X=0 as input (Open Drain)
0x01: Setting timer.
D1 chooses timer, and 0x02-0x03 corresponds T2, T3. D0
sets timer datum, unit as 1ms, 0x00 refers to 256.
0x02: LIB code loading. As variable space address, D1: D0 should
be even.
Loading to code space starting as 0x0000, adopting CALL 0x0000 to
transfer.
0x03: DWIN OS code loading. As variable space address, D1: D0
should be even.
0x04: Unencrypted 512-byte OS code loading (program call or process
management); D1: 00 is the variable space word address of the stored
code, and D0: 00 is the code space byte address.

Loading code should be encrypted in advance by DWIN specialized
tool, loading time is about 200uS.
CONFIG 0, 0, 0x0F

IO operation: output OUTPUT

<P#>,

<MOD>,

R#/<OUT>

Outputting to a specified IO port（8-bit or 1bit）.

<P#>: A serial number of IO port. 0x00-0x02 corresponds to P1-P3.
<MOD>: outputting mode

0x00=8 bit output, output is immediate number
<OUT>.
0x01=8 bit output, output is R# specified value.
0x*2=output R#.0, then put R# right ring shift once, <MOD> high 4bit
as IO position.
0x*3=output R#.7, then put R# left ring shift once, <MOD> high 4bit
as IO position.

OUTPUT 0, 0, 0x55; P0（IO7-IO0）port outputs 01010101

OUTPUT 1, 0x32, R2; R2.0 outputs to IO11, and R2 right ring shift

once.

IO operation: input INPUT

<P#>,

<MOD>,

R#

Read the content of specified IO port（8-bit or 1bit) to register.

<P#>: The serial number of IO port, 0x00-0x02 corresponds P1-P3.

<MOD>: Inputting mode
0x00=8 bit parallel
inputting.
0x*2=R# right ring move once, reading R#.7, <MOD> high 4bit as
IO position.
0x*3=R# left ring move once, read R#.0, <MOD> high 4bit as
IO position.
R#: Register ID read from IO port data.
INPUT 1, 0, R20; IO15-IO8 outputs R20 register value
INPUT 1, 0x32, R2; R2 right ring move once, reading R2.7 as IO11
status.

 Professional,Creditable, Successful

www.dwin.com.cn Hotline: 86-400-018-9008 17

5. Appendix

Date Content Revision
Software
version

2019.02.12 First Issuance V1.0

If there is any question when you using this file or DWIN product, or willing to know more about DWIN

product news, feel free to contact us:

Hotline: 86-4000189008

Mail: dwinhmi@dwin.com.cn

mailto:dwinhmi@dwin.com.cn

